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Abstract 

Data movement across a computer memory hierarchy and across computational grids is known to be a limiting 
factor for applications processing large data sets. We use the Data Cube Operator on an Arithmetic Data Set, called 
ADC, to benchmark capabilities of computers and of computational grids to handle large distributed data sets. We 
present a prototype implementation of a parallel algorithm for computation of the operatol: The algorithm follows 
a known approach for computing views from the smallest parent. The ADC stresses all levels of grid memory and 
storage by producing some of 2d views of an Arithmetic Data Set of d-tuples described by a small number of integers. 
We control data intensity of the ADC by selecting the tuple parameters, the sizes of the views, and the number of 
realized views. Benchmarking results of memory peq5onnance of a number of computer architectures and of a small 
computational grid are presented. 

1 Introduction 

1.1 Memory Performance and Data Intensive Applications 

Memory hierarchy of modern machines is growing in many directions: in size, in depth, and in complexity [ 1 1, 
Ch. 51. Some computers employ dedicated multilevel caches (SGI Origin and Altix), others employ shared multilevel 
caches (IBM Power4), or use a combination of caches with vector registers (Cray Xl), or unconventional architec- 
tures to hide memory latency (Cray MTA and Stanford STREAM processor). In spite of these efforts, even the best 
implementations of many important scientific codes on cache based machines achieve only 10-20% of peak machine 
performance due to slowness in feeding data to processors. For data intensive applications, performing a few opera- 
tions per datum and accessing data in a random fashion, memory performance is the critical factor. 

Two commonly used memory performance measures, bandwidth and latency, can be applied only for extreme 
cases of applications where all memory accesses are well vectorized or each access is an L2 miss. A memory perfor- 
mance measure which can be used to estimate performance of data intensive applications should reflect performance 
of all relevant memory components (from L1 to VO). Several benchmarks are available for evaluation of memory 
and VO systems, including STREAM and PTRANS [13], HINT [12], the recently developed NAS BTIO [30], and 
TPC transaction processing benchmarks [l 13, Ch. 7.9. The STREAM and PTRANS benchmarks measure memory 
bandwidth by accessing contiguous memory locations and sending data to a processor (STREAM) or between proces- 
sors ( P " S ) .  The "T benchmark computes Jt e = 2 In 2 - 1 using a hierarchical integration method [ 121. 
As precision of the computation increases, the hierarchical integration uses a finer partition of the interval which in- 
creases date set size. A drop in efficiency of the computation indicates that the data set does not fit in cache. A similar 
probing of the memory caches can be accomplished by accessing the memory with a fixed stride [ l l ,  p. 5131. NAS 
BTIO benchmark is designed to test the capability of systems to support parallel I/O. Tpc benchmarks are designed 
to compare performance of query systems rather than to benchmark memory or VO performance. 

With computational grids coming on-line such as NASA's Grid Test Bed, TeraGrid, UNICORE and others, data 
sharing among research groups becomes a real-time activity. Distributed data access and processing become an essen- 
tial part of many scientific and commercial applications and is supported by grid middleware such as Globus Toolkit, 
Load Sharing Facility (LSF), Storage Resource Broker (SRB), and Akamai data caching technology. The grid mid- 
dleware has a major impact on a grid user's ability to access vast storage resources of computational grids. Currently, 
neither do the users have a tool to evaluate this middleware nor do developers have a commonly accepted measure 
of efficiency of their middleware. Most computer memory benchmarks are confined to a single machine and can not 
easily be extended to grids. The four NAS Grid Benchmarks ED, HC, MB, and VP are coarse grained and computa- 
tionally intensive (see a taxonomy of grid applications in [25]) and cannot easily be transformed into a meaningful data 
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intensive grid benchmark. A number of NASA's applications, such as satellite data assimilation, combining results 
of large scale distributed simulations, and transactions in distributed databases, are proprietary, too specific, and too 
complex to serve as a benchmark. 

We propose a data intensive application benchmark which generates a large volume of data and, depending on 
the input data size, can be used to benchmark performance of any level of computer memory, from L1 to YO and 
distributed storage of computational grids. By varying the size of input data, the benchmark can spill data across a 
few top levels of the computer memory hierarchy, making it also a good tool for obtaing a memory signature. This 
new benchmark, Datu Cube @C), takes a synthetic data set described by a small number of parameters and generates 
multiple views of this set. Informally, it can be classified as multidimensional sorting. Multiple processors can work in 
parallel to measure combined performance of multiple I/O systems attached to a machine. Futhermore, the parameters 
of the input data set can be chosen to saturate lI0 systems of the largest existing machines, so that multiple grid hosts 
may be efficiently used to reduce the benchmark turn-around time. This property allows us to test grid middleware 
which finds appropriate grid resources and assigns benchmark subtasks to the various grid resources. 

The DC benchmark performs a data intensive operation known in data mining as the Data Cube Operator (DCO). 
Informally, DCO computes views of a (maybe distributed) data set represented as a set of tuples. For a chosen set of 
attributes, a view is a sorted set of the tuples with attributes from the set. To generate a view, DCO performs O(1og n) 
memory accesses per tuple, where n is the number of tuples. A view can be generated either from the original data set 
or from a parent (a view having one more attribute than the target view). This property allows us to split DCO into 
tasks having small intertask communications and to distribute the tasks across processors or/and grid hosts. A natural 
measure of the DCO performance is TUples generated Per Second (TUPS) .  TUPS represents the rate at which DCO 
generates tuples. 

1.2 The Data Cube Operator 

The main subject of data warehousing, On-Line Analytic Processing (OLAP), decision support database systems, 
data mining systems, and resource brokers, is a data set represented as a list of tuples. A tuple t of a data set having 
d dimension attributes and a single measure attribute can be represented as t = (21,. . . , id, c), where each dimension 
attribute i3 assumes values in an interval [I, m3 - 11, and c is a cost function (a measure) associated with (21,. . . , id). 
The goal of OLAP i c  to assist i i r~ rg  tn & g p p ~ r  pattern ZZQE&~S ~- the &a set hy prc~idicg shcr? q w ~  
execution times [24]. 

A standard tool of OLAP is the DCO [9] which computes views (or group-bys) of a data set. For a chosen subset of 
k attributes, a view is a sorted set of k-tuples containing only the chosen attributes with accumulated measures of the 
duplicates. DCO computes views of interesting subsets of the dimensions. For example in [3, 141 there are proposed 
approaches for mining multi-dimensional association rules and answering iceberg queries by computing an iceberg 
cube containing views exceeding a certain threshold. 

The input data sets and some of the materialized views usually do not fit in core memory, thus DCO computation 
requires a careful reuse of data loaded into the main memory (and all levels of cache). Computations of the DCO 
feature intensive data t r a c  across various levels of memory, making DCO especially interesting as a data intensive 
benchmark. Also, the size of the E O  output is usually significantly larger than the size of the input. Many papers 
are devoted to efficient computation of the DCO [15, 17, 23, 311 including parallel DCO computation algorithms 
[5, 18, 211. To improve the efficiency of querying data cubes, a number of publications consider calculation and 
storage of data cubes as condensed cubes 1291 or as other highly compressed structures [26]. 

For the reference implementation, we choose a greedy algorithm [15] that computes each view from a smallest 
parent. We assume that all attribute values are integers. Although real OLAP data sets and existing OLAP benchmarks 
[22,28] use mostly strings as attribute values, this is not a significant limitation, since strings can be enumerated by 
integers (using hashing, for example). One of the advantages of using integer attribute values is reduction in the size 
of the input data sets and of the materialized views. 
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2 The DC Benchmark 

2.1 Features and Parameters 

There exist data sets to test OLAP systems, DCO algorithms, and data mining algorithms, for example, the ABP-1 
and TPC-C,H,R,W benchmark databases [ 11,22,28]. For benchmarking purposes, the most appropriate is a synthetic 
parametrized data set which can be generated by a small program. This would make the data set scalable, the distri- 
bution of the benchmark manageable, and verification simple. Also, a synthetic data set, as in many real applications, 
can be generated in a distributed fashion, saving the effort and the overhead of splitting and distributing the data set on 
a computational grid. 

In available synthetic data sets, the tuples are randomly generated. These data sets do not provide any means to 
control the sizes of the views. One can estimate the view sizes using sampling or some analytical methods [ 15, 261. 
In [7] we introduced the Arithmetic Data Set (ADS), which is generated by a random number generator but has the 
advantage of a priori known sizes of the views. 

ADS S is a subset of a group Q defined by 

where (Z/m,Z)* is the set of integers modulo m, relatively prime with m,. An element of S can be represented by a 
tuple x = (XI, . . . , xd), where x, is a modulo m, residue. The subset S is defined by a seed s = (SI,. . . , sd )  E Q, a 
generator g = (91, . . . , gd) E Q, s,, ga # 0, i = 1, . . . , d, and the total number of elements n: 

n-1 

s = u (slg;, . . . 7  sdgi), 
j=O 

where the multiplication operations are within group Q. For any subset of IC different cube dimensions I = {il, . . . , ik) C 
{ 1, . . . , d } ,  the I-view of x E Q is defined as a projection of x on the I-face of the cube: 

XI = (Xil,. . . , Xik). 

The I-view of S is the set of I-views of all elements of S,  or 5'1 = { X I ~ X  E S}. If qi is the smallest integer such that 
g y  = 1 mod (mi) ,  for the number of distinct elements in SI, we have a formula 15'11 = min(n, LCMie~(qi))', [71. 

2.2 Choice of the Measures 

In real applications. the sum of measures of all tuples in the view is used to characterize a view. In the bench- 
mark, we use a single checksum for testing correctness and completeness of the computations. For this purpose, it is 
important that 

0 the measure of a tuple can be computed independently of other tuples 

0 the measure of a view cannot be calculated unless all tuples of a view have been generated 

0 the checksum is a separable function of the checksums of the views 

'LCM stands for the Least Common Multiple. 
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To meet these requirements, we limit the maximum measure value by an arbitrarily chosen number 1M = 31415. Then 
we define the measure of a tuple z = (51, . . . , zd) to be 

p ( ~ )  = X * g mod M 

where X is the maximum of the attribute values of z and g is the first seed of 5. Finally we define the checksum of 
the view I = {il,. . . , ik} c (1,. . . , d }  to be 

c ( I )  = (v(z) * p(z)  mod M )  

where v(z) is the sequence number of a tuple in SI. As a result, the checksum of a view does not exceed M times 
the total number of the input tuples. Finally, the checksum of the benchmark is a sum of checksums of all generated 
views. 

ZESI 

3 Implementation of Data Cube Computation 

3.1 Approaches to Data Cube Computation 

Since the publication of [9], a number of sequential and parallel data cube computation algorithms have been 
developed. These algorithms constitute two main groups, depending on whether they compute the views by means of 
sorting or by a hash table [8]. Each group employs similar optimizations: smallest-parent, cache-results, amortize- 
scans, [23,15]. A share-sort optimization is specific to the sorting based algorithms. The Arraycube [31] algorithm, 
based on Multi-Way Array-Based method, is another class of DCO computation algorithms. It uses a chunk-offset 
compression technique to deal with sparse data and memory management and performs a pipelined tuples aggregation. 
Arraycube is the first practical algorithm designed for multidimensional OLAP systems. The generated data cubes 
often are stored as condensed or highly compressed cubes [29,26, 171 to improve the efficiency of querying. 

The views can be computed either in top-down or bottom-up manner [23, 31. Such algorithms as Pipesort, 
PipeHash, and Overlap use the top-down approach. The PipeSort algorithm actually determines the squence nf 
views by finding a minimum weight matching in a bipartite graph. If the view size decreases as a function of the 
number of view attributes, these algorithms outperfom many other algorithms. 

Many DCO algorithms [9, 15, 231 use a smallest-in-size view “parent” from a set of already calculated views to 
create a new view. For certain classes of aggregation functions, dependency among related views can be represented as 
a search lattice [15]. The optimal sequence of views can be determined by solving a minimum spanning tree problem 
where cost of each node is the view size. 

3.2 The Top-Down Data Cube Computation 

For the reference implementation, we choose the top-down, sort-based data cube computation which uses the 
smallest-parent heuristic. The algorithm reads ADC data tuple-by-tuple from a file. It inserts a tuple into a balanced 
tree using dimension attributes as a key. If a tuple with the key is found in the tree, the measure attribute values are 
aggregated. If a view fits into main memory, the algorithm performs all aggregations ’on-the-fly’. After a view is built, 
the next view is computed from a smallest parent view. The algorithm proceeds until the computation of all views has 
been completed. 

We use balanced trees (namely, Red-Black-trees) to aggregate data in a sort-base algorithm because they provide a 
simple way to aggregate data on-the-fly. This leads to a simple implementation of both internal and external branches 
of DCO. For data with a small number of duplicates, a regular sort will likely outperform the balanced trees. However, 
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if the collapsing ratio is moderate, this performance gain will not be significant. Other balanced trees (for example, 
AVL-trees or some B-tree modifications) are suitable to aggregate data in main memory. However, experiments show 
that the performance gain is not significant relative to the RB-trees. Potentially, one can use variants of B-trees (for 
instance, B+-trees or B*-trees) to aggregate data in an external case. That would be convenient because no merging 
would be necessary, but extremely inefficient. Despite improvements in cache perfonnance, the B+-trees show bad 
performance for large random data sets. If, for example, a B+-tree cache can store only 10-20% of data, the high 
chance of reading at least one page from disk in any insert operation results in a large 1/0 volume. To be competitive, 
an external sort with multi-way merging has to significantly outperform any B-tree implementations. 

Our sequential algorithm performs a dynamic task planning. It computes the data cube in a top-down, level-by-level 
manner. The algorithm starts to compute views with the given number of attributes when all views of the larger number 
of attributes are completed. To compute a new view, the algorithm chooses a smallest ready parent. The algorithm 
uses simple data structures to dynamically maintain the search lattice (a weighted graph). 

If a view does not fit into main memory, the algorithm uses an external sorting. In this case, the algorithm uses 
balanced Gees to form sorted chunks of the view. Each chunk contains only distinct tuples. Finally, the view is 
assembled from the chunks by means of multi-way merging. 

3.3 DC Performance Model 

Most DC execution time is spent on accessing data: fetching data from memoryldisk, sorting the data, and writing 
the data to memory/disk. The main DC operation is the insertion of a tuple into the RB-tree. Some additional operations 
include balancing of the tree, bookkeeping operations, reading/writing internal buffers, and constant time operations, 
such as memory allocations. 

For a view containing d, attributes, the size of each node of an RB-tree has uod, + u1 bytes, where uo and u1 are 
constants2. Since we are using balanced trees, the number of nodes from the root to a leaf is between log n and 2 log n 
for an RB-tree, where n is the number of unique tuples in the view. Hence, an insertion of a tuple involves reading of 
approximately 

bytes. Since (2) attains a maximum around d, = i d ,  the typical value of d, is d, = i d .  Actual access to the tree 
nodes involves a number of pointer dereferences, such as looking for the left or right node and checking the node color. 
A comparison of attributes of a tuple stored in the node with attributes of the current tuple and creation of a new tree 
node takes u ~ d  memory accesses. 

In addition, there is a number of auxilary operations, such as reading the smallest parent and updating pointer 
arrays. These operations involve vodn memory accesses. Hence, the total number of cycles required to compute a 
view is 

(uod, + u1) log 

p((uod, + u1)nlogn + vodn) + WO, 
where p is the average number of machine cycles it takes to access a datum and wo is a constant number of bookkeeping 
operations incurred once per aii views. 

The value of p changes as the number of input tuples grows. If the L1 cache can hold a tree of depth 1 and n L 2', 
all tree node accesses are L1 hits and p = M I  + mo, where Ml is the number of cycles it takes to access a datum in 
the L1 cache, and ml is time to access a tuple ammortized over all node accesses. For a two-level cache, if a tree of 
depth 1 fits in the main memory, and a cache of level i can hold a tree of depth l,, the cost of insertion is 

1 
p = T(M111 + M2(12 - 11) + Mo(Z - 1 2 ) ) ,  

Specifically, if the machine has 64-bit pointers and the tuple attributes are 4 bytes long, the node size is 36 + 4 * dz. 2 
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where MO is the number of cycles to access a datum in main memory, and MI and M2 are the number of cycles to 
access a datum in L1 and L2, respectively. Hence, as the number of input tuples grows, the tree spills out of L1, and 
then out of L2, the cost of memory access p gradually increases. 

If all tuples in all views are unique and the total number of generated tuples is 2dn,  it takes 2 d p ( ( u o 4 + u l ) n  log n+ 
vodn)  + wo cycles for accessing memory. After simplification and taking into account that a typical value of di is d /2 ,  
we conclude that the time per tuple is 

where v1 = u0/2. TUPS of the algorithm equals T-l. 
This formula for time per tuple has a simple interpretation. For small n, the last term dominates the others, hence 

the time decreases as wo/n. For large n the h t  term dominates the others, hence time per tuple is proportional to 
log n, to the cost p of access to the current level of memory, and to the number of attributes d. In practice, not aJl 
views have sizes n, and u1 dominates v ld .  As a result, equation (1) should be considered only an approximation. 

4 Distributed Data Cube Computation 

4.1 Parallel Data Cube Computation 

There are a number of ways to perform E O  in parallel [4,5,19,21]. The child-parent dependences among views 
usually are represented by a weighted lattice of the views. The weights of the nodes of the lattice (the view sizes) and 
of its edges (costs of calculating dependent views) are usually estimated. A common final step is a partitioning of a 
weighted spanning tree of the lattice into p balanced tasks, where p is the number of processors. 

A method described in [5] creates a relatively small number of coarse grained independent tasks. First, it creates a 
spanning tree T ofthe view iamce with ~e view weigiiis ~eyresc~tu~~g &e cost of cieiitiiig i: k ~ i ~  a rnzkhed pzrezt h 
T.  The partitioning of T into subtrees is an NP-complete problem [5].  So they use a heuristic approach, which creates 
the p balanced subproblems and minimizes the number of subtrees assigned to a processor. First, the min-max tree 
k-partitioning algorithm [2] is used to partition T into s . p subtrees, where s 2 1 is an integer called oversumpling 
ratio. Then, the partitioning uses a packing heuristic to assign s subtrees to the processors. The performance results 
[5] show that a partitioning with s equal 2 or 3 provides good load balancing across the processors. 

In our parallel implementation of DCO computation we use a simpler algorithm. We use a priori knowledge of the 
view sizes to partition the data cube such that output data files (files with generated views) are well balanced across the 
processors. We distribute the output data across all view files evenly because the data cube computation is YO bound. 
Since the size of the output data cube is usually significantly bigger than the size of input data, this approach yields 
a relatively good load balance. We partition the data cube into coarse grained independent tasks with little inter-task 
communication, so that the tasks can be executed on shared memory machines, clusters of shared memory machines, 
and in a distributed grid environment. 

Assuming that the number of the processors p is substantially smaller than the number of the views, we assign 
the views to the processors in three steps. First, we sort all views by decreasing size. Then we assign the views to 
processors by zig-zagfolding: jth-view is assigned to processor ( - l ) e j  + e(p - 1) mod p ,  where e = ( j / p >  mod 2. 
Finally, we restore child-parent relationships in the lists of views assigned to each processor by sorting the lists by the 
number of dimension attributes. Now each processor computes a view from the smallest parent. This approach gives 
a load balance exceeding 94% in our experiments. 



4.2 Grid Level of Parallelization 

Machine Name NF' Clock Rate Peak Perf. Memory Maker Architecture 
(MH4 (GFLOPS) (GB) 

Our experiments with the DC benchmark (see Figure 5 )  show that, on a parallel machine, we can use only a few 
processors efficiently. The reason is that the benchmark saturates the machine I/O devices. On the other hand, since 
there is little communication between DC tasks, the DC turn-around time can be reduced if some tasks will be executed 
on other grid machines. 

When forming tasks for heterogeneous computational grids, we have to take into account that the i-th machine has 
a performance of ri TUPS. To achieve a good load balance, we have to assign to the i-th machine a load of V * ri/T, 
where V is the total load and 

S 

Batch 
System 

i= 1 

To do that we use a modification of the zig-zag folding of Section 4.1. We sort all views by decreasing the sizes. Then 
we assign the views to the machines by scanning the machines alternately in directions of increasing and decreasing 
of i, skipping the machines whose load exceeds V * ri/T. We then partition the tasks assigned to each machine, as 
described in Section 4.1. 

5 DC Benchmark Results 

We tested the DC Benchmark on the machines shown in Table 1 with normal production load during our experi- 
ments. 

5.1 Single Processor Memory Signature 

Exeprimental results of running a single processor version of the DC benchmark with 11, 12 and 14 dimensions are 
shown in Figures 1 and 2. Figure 1 clearly indicates presence of an initial segment and two straight line segments in 
each plot. The initial segment indicates domination of the last term of Equation 1. Each straight line segment indicates 
the log n term of Equation 1 with constant memory access cost p. The end points of the segments reflect a change in 
the memory access cost p when the RB-trees, used for sorting of the views, grow beyond the L1 and L2 caches. As a 
result, the minimum in the graphs indicates the point when the L1 cache is filled up by the tree, hence the size of the 
L1 cache can be estimated from the minimum and the tree node size (4 * d $. 36, see Section 3.3). 



9 

dim=lI 

r ' """" ' """" ' ' " ' ' ' . t  ' " " " '  .I 
\ 

10 - \  

Figure 1. Time per tuple of DC with 11 dimensions on the SUNFire 880 and Origin 2000. Each 
curve consists of an initial segment, and two straight line segments. These segments are 
(64,512), (512,64K), and (64K,2M) for SUNFire 880 and (64,1K), (1K,32K), and (32K,2M) for Origin 
2000, respectively. 

Plots for dimensions 12 and 14 for three architectures are shown in Figure 2. These plots demonstrate that the 
structure (initial segment - two straight line segments) holds for other dimensiondarchitectures. This gives us us a 
base to call T i e  Per Tuple 0 of DC.U a memory signature. 

5.2 Scalability of Memory Performance 

The graphs of Figures 3 and 4 show that in-core computations of DC scale very well. The actual load imbalance 
was less than 6% for up to 32 processors. Comparison of the right graph on Figure 3 and graphs on Figure 4 shows 
that the overhead of memory initialization on Origin3800 is significantly larger than that on SUNFire 880, while for 
larger sizes of input data, memory performance of the two architectures is very close.3 

For large data sets, the RB-trees do not fit in core memory, and Figure 5 shows that the increase in the number of 
processors does not improve TUPS m p l e s  Per Second). It indicates that the YO system on the machine has been 
fully utilized. To avoid the YO bottleneck, we distributed the DC across machines of a computational grid using 
the algorithm of Section 4.2. Such distribution incurs a small overhead, since, as soon as a parent view of a task is 
generated, the task does not have to communicate with others. The results shown in Table 2 demonstrate that 'IZTPS 
increases when additional grid resources are used. 

3The memory performance gap between the Origin 2000 and SUNF~e 880 is about 2.5 and growing with the size of the input set, see Figure 1. 
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Machine 

SF880 
03K1 

Three Architectures 

Experiment Number 
1 2 3 4 5 6 

np load np ioad np load np load np load np load 
8 118 - - 4 118 4 118 4 118 

- 8 118 - - 4 118 8 1/32 - 

H d = 1 2 .  SF880 
L-Jd=i4. SF880 
M d = 1 2 ,  Origin 3800 
+-+d=14, Origin 3800 

03K2 
U60/1 
U60/2 
h i e  ( S  j 
TUPS 

0 ’  
1 o2 10‘ 1 o6 

Number input tuples 

, 
8 118 - 8 1/32 8 1/32 

2 1/16 
2 1/16 

n? i 
7.J.l  

n? i 
7 J . l  

,A,- 0 179.3 1VV.L 
-1- n ,-In 1 
L4.L.L 1 1 Y . 1  

848.10’ 1 145.7.10’ 1145.5.10’ 1934.4010~ 2206.5.103 2206.5.103 

Figure 2. TheTime per Tuple curves of DC 12 and 14 dimensions on the Ultra Sparc 60, SUNFire 
880, and Origin 3800, respectively. 

5.4 Benchmark Classes 

In practice, to use a significant number of DC instances as a benchmark would be confusing for the users. To get the 
memory signature for any particular machine, the user has to make runs of DC for different sizes of the input data sets. 
The verification values for a significant number of DC instances would constitute a large array of data to be distributed 
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SUN Ultra 60 
Data Cube (DC) 

SUNFire 880 (8 procs) 
Data Cube (DC) 

I 10 I I 

I 01 
1 o2 10' 1 os 1 0' I 0' 1 OB 

Number input tupls Number input tuples 

Figure 3. Scalability of Time per Tuple of DC on the Ultra Sparc 60, left pane, and on the SUNFire 
880. riaht aann. 

with the benchmark. To resolve these issues, we specify a few representative points in the ADC parameter space. This 
follows the NPB tradition to spec@ classes (S, W, A, B, C ,  and D) reflecting the computational effort required to 
perform the benchmark. In DC we define classes so that they will exercise all levels of memory hierarchy of current 
systems, from L1 to the I/O system. This restriction will not prevent a user from obtaining memory signatures using 
DC, but it will focus their experiments in the representative points in the ADC parameter space. For choosing classes, 
we use the flexibility provided by our choice of the data set generator. 

For the benchmark we choose mi to be prime numbers and gi to be generators of (Z/m,Z)*, hence having period 

chance of been small. This approach gives us full control over the sizes of the data set and its views. Our actual choice 
of the mi is shown in Table 3. 

59). For each group we choose five smallest primes mi such that prime factors of mi - 1 are 2 and numbers from this 
group4, Table 3. This set ofparametersgivesusadatasetof 25.32.52-72.11.13.17.192.23.29.312-37-41.43.47.53.59 

same time, the sizes of five-dimensional views (relative to each of the groups) are small relative to the total number of 
the elements in the data set. We further restrict the set of parameters to make four classes of the benchmark: S, W, A, 
and B and reduce the sizes of the views having many attributes. For doing this, we designate subcubes generated by 
the first five, 10,15, and 20 dimensions as classes S ,  W, A, and B respectively 3. 

We also leave out parameters for the User defined class U. In this class, a user can specify any subset of the attributes 
and any number of tuples. For the class U, we do not provide checksums or verification values. The total number of 
tuples in each class, the sizes of input and estimated output files are shown in Table 4. The final results of the DC 

q. - - f .  - - mi - 1. Also, we choose mi such that mi - i has many small prime factors so that LCPvlier(qi) has a good 

We choose four groups of prime numbers {3,5,7}, {11,13,17,19}, {23,29,31,37}, and {41,43,47,53, 

&iffc;es: 2 2 ~ : ~ s  ~ 2 ,  f ~ r  c z z p l c ,  c;;? = 2 . 11 . 23 . 41 . 3 . 13 . 22 - 43 . E; - 17 = g57E;99?852fi. -AA: +he 

4Since we use odd primes, - 1 always has 2 as a factor. 
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Origin 3800 Origin 3800 
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Data Cube (DC) , dim=l4 

100 

10 

1 

1 o2 1 o4 1 o6 
Number input tuples Number input tuples 

Figure 4. Scalability of Time per Tuple of DC.U on the Origin 3800. 

benchmark on our experimental set of machines are shown in Table 5. 

6 Related Work 

The importance of memory performance in the overall assessment of system performance was recently acknowl- 
eged by the Innovative Computing Laboratory at The University of Tennessee at Knoxwille by adding three memory 
benchmarks STREAM, PTRANS, and 6-eff to the LI"ACK benchmark and creation of the HPC Challenge Benchmark 
suite [ 131. The STREAM benchmark measures memory bandwidth by streaming very long vectors through the proces- 
sor's registers and computing linear combinations of the vectors. The parallel matrix transpose PTRANS benchmark 
exercises communication capacity of the computer memory by transposing a large dense matrix. During the trans- 
pose, pairs of processors communicate with each other simultaneously. The b-eff (effective bandwidth) benchmark 
measures the effective bandwidth by simultaneously sending (MPI) messages using several communication patterns. 
The patterns are based on rings and on random distributions of the communicating processes. 

The HINT benchmark [12] was used for probing sizes of the primary and secondary caches. Recently it was 
realized that similar probing of the memory caches can be accomplished by traversing the memory with a fixed stride 
111, , p. 5131. Such a walk causes numerous cache and TLB misses and may result in low memory performance. 
This method is been used for fighting email spam by asking the sending computer to pay some computational cost per 
email message by solving a memory bound puzzle. 

The benchmarking of data mining systems is a well established area of High Performance Computing [22, 281. 
These benchmarks are designed to compare performance of query systems rather than to benchmark memory or UO 
performance. 
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Figure 5. Performance of DC.U with 10 dimensions on the SUNFire 880 (left pane) and 
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on 
the Origin3800 (right pane). There is no communication between the proc&es and-the load 
balance exceeded 94%. In spite of an increase of the number of processors from 4 to 8 (for 
SUNFire 880) and from 8 to 32 (Origin 3800), the DC benchmark performance degrades due to 
a saturation of the VO systems. 

7 Sllmmary 

The DC benchmark represents an important set of computations used in OLAP and data mining. It executes 
O(1og n) memory acesses per output tuple and is memory or I/O bound. The Arithmetic Data Sets used in DC are 
described by a small number of parameters and have a priori known sizes of the views. Parallelization of the DC incurs 
a small overhead and can be well balanced in load. We introduce the number of generated TUples Per Second (TUPS) 
as DC performance metric. The reciprocal of TUPS, Time Per Tuple gives a signature of the computer memory 
performance. We use charcteristic points in the signatures to choose parameters of various classes of DC. We provide 
a reference implementation of the DC benchmark and use it to benchmark TUPS of several computer architectures. 
We demonstiated that DC can saturate a machine's YO system and in this case its performance can be improvemed by 
using additional grid resources. 
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Table 3. Dimensions of the Arithmetic Data Cube and generators for Classes S, W, A, and B. Here “Least 
Gen.” 7% is the smallest generator of (Z/m,Z)*, and the “Exponent for the class” is e, such that gz = 7;’ 
for given class. 

Table 4. The main sizes of the ADC. The notation a:b:c in the Views Generated row indicates starting 
view:ending view:view number increment. 
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Machine TLJF'S sec TUPS sec TUPS S e c  TUPS sec 
SF880 1232897 0.02 624518 142.99 218774 2078.70 90575 6572.09 
03K1 175161 0.17 489962 182.25 234481 1939.46 114571 5196.62 
03K2 203182 0.14 345283 258.62 178296 2550.62 - -  

Table 5. Single processor DC performance. Classes S, W, and A were executed in-core, class 
B was executed out-of-core. 

I CLASS 
S I W I A I R I 

u60/1 
02K 
G4 
XEON 

I 

549174 0.05 263525 338.86 155632 2922.06 - -  
176118 0.17 197893 451.24 105416 4314.01 - -  

2019202 0.01 474797 188.07 - -  - -  
2617712 0.01 766794 116.46 478907 949.59 - -  

~~ 
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